Adaptive boosting techniques in heterogeneous and spatial databases
نویسندگان
چکیده
Combining multiple classifiers is an effective technique for improving classification accuracy by reducing the variance through manipulating the training data distributions. In many large-scale data analysis problems involving heterogeneous databases with attribute instability, however, standard boosting methods do not improve local classifiers (e.g. k-nearest neighbors) due to their low sensitivity to data perturbation. Here, we propose an adaptive attribute boosting technique to coalesce multiple local classifiers each using different relevant attribute information. To reduce the computational costs of k-nearest neighbor (k-NN) classifiers, a novel fast k-NN algorithm is designed. We show that the proposed combining technique is also beneficial when boosting global classifiers like neural networks and decision trees. In addition, a modification of the boosting method is developed for heterogeneous spatial databases with unstable driving attributes by drawing spatial blocks of data at each boosting round. Finally, when heterogeneous data sets contain several homogeneous data distributions, we propose a new technique of boosting specialized classifiers, where instead of a single global classifier for each boosting round, there are specialized classifiers responsible for each homogeneous region. The number of regions is identified through a clustering algorithm performed at each boosting iteration. New boosting methods applied to synthetic spatial data and real life spatial data show improvements in prediction accuracy for both local and global classifiers when unstable driving attributes and heterogeneity are present in the data. In addition, boosting specialized experts significantly reduces the number of iterations needed for achieving the maximal prediction accuracy.
منابع مشابه
Adaptive Boosting for Spatial Functions with Unstable Driving Attributes
Combining multiple global models (e.g. back-propagation based neural networks) is an effective technique for improving classification accuracy by reducing a variance through manipulating training data distributions. Standard combining methods do not improve local classifiers (e.g. k-nearest neighbors) due to their low sensitivity to data perturbation. Here, we propose an adaptive attribute boos...
متن کاملBoosting Localized Classifiers in Heterogeneous Databases
Combining multiple global models (e.g. back-propagation based neural networks) is an effective technique for improving classification accuracy. This technique reduces variance by manipulating the distribution of the training data. In many large scale data analysis problems involving heterogeneous databases with attribute instability, standard boosting methods can be improved by coalescing multi...
متن کاملBoostML: An Adaptive Metric Learning for Nearest Neighbor Classification
The nearest neighbor classification/regression technique, besides its simplicity, is one of the most widely applied and well studied techniques for pattern recognition in machine learning. A nearest neighbor classifier assumes class conditional probabilities to be locally smooth. This assumption is often invalid in high dimensions and significant bias can be introduced when using the nearest ne...
متن کاملImproving reservoir rock classification in heterogeneous carbonates using boosting and bagging strategies: A case study of early Triassic carbonates of coastal Fars, south Iran
An accurate reservoir characterization is a crucial task for the development of quantitative geological models and reservoir simulation. In the present research work, a novel view is presented on the reservoir characterization using the advantages of thin section image analysis and intelligent classification algorithms. The proposed methodology comprises three main steps. First, four classes of...
متن کاملAdaptive Dynamic Data Placement Algorithm for Hadoop in Heterogeneous Environments
Hadoop MapReduce framework is an important distributed processing model for large-scale data intensive applications. The current Hadoop and the existing Hadoop distributed file system’s rack-aware data placement strategy in MapReduce in the homogeneous Hadoop cluster assume that each node in a cluster has the same computing capacity and a same workload is assigned to each node. Default Hadoop d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Intell. Data Anal.
دوره 5 شماره
صفحات -
تاریخ انتشار 2001